
 

 
     
 RESTRICTED 

FOR USE BY EDUCATION OFFICERS ONLY 

 
 
 
 
 

 
 

O-LEVEL COMPUTING SYLLABUS 
Upper Secondary  

Express Course 
Normal (Academic) Course 

Syllabus 7155 
(Revised) 

 
Year of Implementation: from 2017 with Secondary Three 

 
 
 
 
 

 

© 2016 Curriculum Planning and Development Division.  
This publication is not for sale. All rights reserved. No part of this 
publication may be reproduced without the prior permission of the 
Ministry of Education, Singapore.  



 

 
     
 RESTRICTED 

FOR USE BY EDUCATION OFFICERS ONLY 

O-LEVEL COMPUTING SYLLABUS 
For implementation in 2017 
First year of examination in 2018 
 
Computer Education Unit 
Sciences Branch 
Curriculum Planning and Development Division 
Ministry of Education 
Singapore 
 
First published 2016 
Second version 2020 
 
 
 
 
 
 
 
 
 



 

 
     
 RESTRICTED 

FOR USE BY EDUCATION OFFICERS ONLY 

CONTENTS 

 
Page 

1.  INTRODUCTION  
• General Overview 

• Importance of Subject 

• Computer Education Framework 

• Big Ideas in Computing 

• Rationale for Change   

• Design Elements 
 

 
6 
7 
7 
9 

10 
11 

2.  CONTENT  
• Syllabus Overview 

• Module I: Data and Information 

• Module II: Systems and Communications 

• Module III: Abstraction and Algorithms 

• Module IV: Programming 

• Curriculum Time 

 
15 
16 
19 
21 
23 
26 

  

3.  PEDAGOGY 
• Applied Learning 

• Learn by Doing 

• Resources 

• Scheme of Work 

• Hardware and Software 
 

 
29 
30 
33 
33 
36 

4.  ASSESSMENT 
• School-based Assessment 

• Assessment Objectives of National Examination 

• Scheme of National Examination 
 

 
37 
37 
38 

  

  

Annex A: Quick Reference for Python 43 

Annex B: Quick Reference for Flowcharting 45 

Annex C: Glossary of Terms 47 

  

  

 
 
 
  



 

 
     
 RESTRICTED 

FOR USE BY EDUCATION OFFICERS ONLY 

  



 

5 
 

 

 

 

 

 

 

 

 

SECTION 1: 
INTRODUCTION  

 
General Overview 

Importance of Subject 
Computer Education Framework 

Big Ideas in Computing 
Rationale for Change 

Design Elements 
 
  
 

  



 

6 
 

1. INTRODUCTION 

 
General Overview 
 
Over the past decades, advancement in computer technology has been the key driving force 
behind much of the changes witnessed in many aspects of our lives. Beyond this impact on 
our daily lives as users of technology, Computing has become so entrenched in the fields of 
Science, Technologies, Engineering and Mathematics (STEM) that it has transformed the very 
practices of those disciplines. 
 
Data analytics are transforming the future of business and research in diverse areas. We will 
need stronger computational capacity and people with considerable computational thinking 
skills to automate and streamline processes, work with data (e.g. text and images) to discern 
trends and draw inferences, develop hypotheses and innovate in fields like medicine, science 
and engineering to solve complex problems. 
 
Professionals in finance, retail and manufacturing will require computational thinking skills to 
be competitive in their fields. For example, it will be an asset to acquire the ability to use a 
computer to analyse data to predict market and business trends, understand economic 
conditions and build participatory relationships with clients in the digital environment. 
Students who study O-Level Computing would acquire a stronger foundation in 
computational thinking that would be useful to their further studies and careers. 
 
Purpose and Philosophy 
 
The global computing education landscape is experiencing a renewed emphasis on 
programming (coding) and the fundamental computational skillsets that will prepare students 
to thrive in a more digitally-connected world and work place. The plethora of applications on 
mobile and computing devices have changed the way we live, learn and work. The impact is 
felt across all age groups. To narrow the digital divide, various government schemes and 
initiatives were launched to reach out to the population so that more people can harness 
technology effectively to improve their lives and contribute to society. 
 
While the current baseline ICT programme equips all students with basic computer literacy 
skills to be informed users of technology, the O-Level Computing curriculum aims to grow 
students’ interest and competency in more advanced concepts and skills. This will equip them 
with the necessary foundation to continue with post-secondary computing courses. A 
secondary aim is to encourage students to consider careers in computing technology and 
systems or as skilled programmers, system developers and software engineers. Our aspiration 
is for this group of students with the passion for Computing to eventually harness their talent 
to solve complex problems or create new value propositions in society through technology. 
 
 

  



 

7 
 

Importance of Subject  
 
The value of computing arises from the fact that it has the ability to integrate the use of 
software and hardware to create new artefacts, solve/address real-world problems and 
perform tasks. Computing is grounded in (i) computational thinking and (ii) systems thinking; 
and enables (iii) exploration and innovation. Thus, Computational Thinking and Systems 
Thinking form the two arms in the dimension of Computer as a Science in our computer 
education framework (shown in Figure 1.1). The other two dimensions on Computer as a Tool 
and Computer in Society also cover important areas in Computing and are taught so that 
students are able to develop their ideas and creativity through the use of information and 
communication technology (ICT) to contribute to society. 
 
Computational Thinking 
 
Computational thinking is a thought process that involves formal reasoning, logical and 
algorithmic thinking, and the reformulation of a problem so that a computer-based solution 
is viable. 
 
In the O-Level Computing subject, students are taught how to go through a systematic process 
of thinking when solving problems (abstraction), formulating steps for solutions (algorithmic 
thinking) and writing computer programs (programming/coding) to produce the solutions. 
Hence, students develop computational thinking skills when analysing problem situations and 
reformulating them into problems with computational solutions. They also develop 
computational thinking when coding effective and efficient programming solutions. Students 
with computational thinking skills will be able to apply their skills across other subject 
disciplines and be better enabled to solve real-world problems in those disciplines. Armed 
with computational thinking skills, our students will have a competitive edge in the 
increasingly digital landscape. 
 
The promotion of computational thinking in students also featured predominantly in the 
syllabuses offered in the countries scanned (e.g. UK, US, Australia and Hong Kong). 
Computational thinking and the study of Computing allows the students to understand the 
digital world in a deeper way; just as physics allows students to understand the physical world 
better and the study of biology allows a better understanding of the biological world. 

 
Computer Education Framework 
 
The computer education framework comprises three dimensions: 

• Computer as a Science 

• Computer as a Tool 

• Computer in Society 
 
Computer as a Science 
 
The dimension of Computer as a Science looks into the scientific aspect of computer science, 
focusing on the core components of computational and systems thinking.  



 

8 
 

Computational thinking develops students’ skills in problem solving through algorithmic 
thinking and design. Acquisition of programming language skills is usually a part of this area 
of learning. Computational thinking, as defined by Jeannette M. Wing1, is a way people solve 
problems and that it is not about trying to get people to think like computers2. This often 
involves thinking and problem-solving processes to reformulate a seemingly difficult task into 
one we know how to solve. Thus, computational thinking, in her opinion, is a fundamental 
skill for everyone, not just computer scientists. 

 
Systems thinking develop students in the design and creation of systems and solutions 
through processes in problem definition, system analysis, and systems design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1: Computer Education Framework (The outer ring are examples of topics that could be studied for the 
three dimensions shown in the inner ring. The middle ring shows the components of each dimension.) 

 

                                                      
1 Jeannette M. Wing is the President’s Professor of Computer Science and head of the Computer Science Department at 
Carnegie Mellon University. 
2 J. M. Wing. Computational Thinking. Communications of the Association for Computing Machinery (ACM), March 2006, 
Vol. 49(3). 

SOCIETY 

TOOL 

SCIENCE 

• Word processing 

• Computer crimes 

• CAD/CAM Computational 
Thinking 

 

Systems 
Thinking 

Use of 
Computer 

Use of 
Applications 

21st Century 
Competencies 

Ethical & 
Legal Use 

Safe & 
Responsible 
Use 

• ICT devices 

•Critical and 
Inventive 
Thinking 

• Information and 
Communication 

Skills 
•Civic Literacy, 
Global Awareness 
and Cross-cultural 

Skills 

• Computer 
hardware 

• Assembly & maintenance 

• Troubleshooting 

• Intellectual 
property 

• Ethics 

• Netiquette 

• Data privacy 

• The internet • Safety 

• Viruses 

• Computer security 

• Addiction 

• Social media • Data 
storage 

• Networks and 
communications 

• Systems 
Analysis and 
Design 

• Software 
Engineering 

• Project 
management 

• Robotics 

• Animation 

• Presentation 
tools 

• Spreadsheets 

• Media tools 

• Web page 
design 

•  Image editing 

• Games 

• Algorithmic 
thinking 

• Discrete 
mathematics 

• Data structures 

• Abstraction 

• Programming 

• Data bases 

• Simulation  



 

9 
 

Computer as a Tool 
 
The dimension of Computer as a Tool looks mainly at the utilitarian aspect of computing and 
ICT.  At the heart of it are the use of the computer and the use of computer applications. Use 
of computer exposes students to the hardware, the technology and related devices and 
peripherals that open up ways for work, play and living.  
 
Use of computer applications focuses on the mastery of productivity, communications and 
creative tools to complete tasks for specific purposes. Common examples include word 
processing, spreadsheets, graphics, emails, animation, and web design. 
 
Computer in Society 
 

This dimension focuses mainly on the ethical, legal and security issues relating to the use of 
computers and ICT in society. Issues commonly associated with this dimension include 
internet security, intellectual property, computer addiction, and data privacy. 
 
The inclusion of the 21st Century Competencies component reflects the impact of technology 
on the kind of skills needed at the workplace of the future.  21st Century Competencies 
relevant to the ICT area include the ability to work collaboratively, produce creative work and 
be self-directed in learning. 
 
The Computer Curriculum Framework was updated in September 2017.  
For the full details, please refer to the MOE OPAL Computer Education website. 

 
Big Ideas in Computing 
 
The US College Board and the National Science Foundation (2010)3 focused on practices of 
computational thinking for high school CS curricula based on seven ‘big ideas’ of Computing. 
The ‘big ideas’ are: 

(a) Computing is a creative human activity. 
(b) Abstraction reduces information and detail to focus on concepts relevant to 

understanding and solving problems. 
(c) Data and information facilitates the creation of knowledge. 
(d) Algorithms are tools for developing and expressing solutions to computational 

problems. 
(e) Programming is a creative process that produces computational artefacts. 
(f) Digital devices, systems, and the networks that interconnect them enable and 

foster computational approaches to solving problems. 
(g) Computing enables innovation in other fields, including science, social science, 

humanities, arts, medicine, engineering, and business. 
 

                                                      
3 AP Computer Science: Principles – Big Ideas, Key Concepts and Supporting Concepts (2010, The College Board and National Science 
Foundation). 



 

10 
 

In addition, Stanford University’s4 undergraduate program on ‘Ways of Thinking/Ways of 
Doing’ describes formal reasoning as a way of thinking that involves rigorous deductive 
(logical and analytical) thinking. This way of thinking underpins decision making and analysis 
skills that are applied in many fields, including Computing. 

 
Rationale for Change 
 
The core focus of the OSIE Computer Studies Syllabus was on ICT. An environmental scan on 
related overseas syllabi revealed the need to shift the focus of the new O-Level Computing 
syllabus to emphasise computer science concepts and skills such as programming which are 
critical for the 21st century. 
 

Table 1.1: ICT and Computer Science Modules in the Two Syllabuses 
 

Subject O-Level Computer Studies  O-Level Computing 

Emphasis ICT Computer science 

ICT modules • Applications of computer and 
their social and economic 
implications 

• Generic software and 
organisation of data 

• Hardware, systems and 
communications 

A unit of study on Data 
management with spreadsheet 
software application to support 
the learning of computer science 
concepts such as functions and 
conditional statements. 

Computer 
science modules 

• Analysis of the system 

• Problem solution, including 
design and programming 
concepts (does not require 
the use of programming 
language) 

• Data and Information 

• Systems and Communications 

• Abstraction and Algorithms 

• Programming 
(require the extensive use of a 
programming language to code 
problem solutions) 

 
Table 1.1 shows the ICT and computer science modules in the two syllabuses. The ICT 
component in the O-Level Computing subject will leverage on the use of the internet and 
spreadsheet application software to support students’ learning of computer science 
concepts. Students will learn how to use selected mathematical, statistical and financial 
functions; as well as conditional statements or expressions in the spreadsheet application 
software to execute tasks. They are expected to have, as baseline ICT skills, the knowledge of 
different data types and the ability to organise data into a table, plot charts, and print data 
tables and charts.  
 
A textual programming language is used intensively in the computer science modules; 
especially for the modules on Abstraction and Algorithms, and Programming. Students will 
learn to code computer solutions for various real-world problems so that they could develop 
computational thinking skills, as well as apply concepts and skills taught. They will also 

                                                      
4 The study of undergraduate program at Stanford: Ways of Thinking/Ways of Doing, a capacity-based approach to fostering breadth in 
General Education Electives. 



 

11 
 

develop systems thinking skills, particularly, through the study of the Systems and 
Communications module.  



 

12 
 

Design Elements 
 
Core Areas 
 
The big ideas in computing that we have distilled for syllabus design are classified as core 
areas of study. The core areas and definitions are: 
 

Core Area Definition 

• Data and Information – Ways of managing and processing data so that these 
data can be turned into meaningful and useful 
information to serve its purpose. 
 

• Systems and 
Communications – 

Ways of getting the individual parts of a computer to 
work together to form a computer system. 
 

• Abstraction – Ways of thinking about a problem. 
 

• Algorithms – Ways of planning the steps to solve a problem. 
 

• Programming – Ways of giving instructions to computers to execute a 
solution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2: Using knowledge and skills from the five core areas in the problem-solving process 

 
 
  

. 

. 

. 
 

 

Development 
 

 
Computer 
solution(s) 

 
 

Systems and 
Communications 

Programming 

Design 
 

Algorithms 

Methods of 
solution 
(pseudo-
code/ 
flowchart) 
 

Data and 
Information 

Analysis 
 

Problem 
situation 
 

Task 1 
 

Task 2 
 

Task 3 
 

Task n 
 

Abstraction 



 

13 
 

These five core areas are selected such that students combine the knowledge and skills gained 
from these areas to produce computational solutions for medium- to large-scale or complex 
problems. As illustrated in Figure 1.2, when presented with a problem situation, the student 
considers the kind of data and information required for the problem (Data and Information), 
decides how the problem could be solved by removing unnecessary complexity (Abstraction) 
and designs the method of solution in the form of pseudo-code/flowchart (Algorithms). The 
student also determines the type of system set-up needed to implement the solution(s) 
keeping in mind the relevant data required for the solutions (Systems and Communications). 
The student finally applies the knowledge of using a programming language to create the 
solutions for the various tasks (Programming) that will be executed and tested in computer(s) 
or computing device(s) before combining them to form the overall solution required for the 
problem.   
 
Curriculum Objectives 

 
Based on the big ideas, curriculum objectives are formulated for the study of the subject at 
various levels; from upper primary to lower secondary to upper secondary and junior college, 
and covering the five core areas in varying degrees. Curriculum objectives are enacted 
through the syllabus aims, content and learning outcomes for students. 
 
Broadly, the curriculum objectives at upper secondary level are: 
 

1. Understand algorithms that reflect computational thinking; 

2. Use logical reasoning to compare the utility and feasibility of algorithms and 

programming solutions in attaining the desired outcomes; 

3. Use a textual programming language to solve a variety of computational problems; 

making appropriate use of data structures (e.g. list, table, array), including the use of 

functions and procedures; 

4. Understand that data and instructions are represented and stored in the form of 

binary digits (bits); 

5. Understand the hardware and software components of a computer network system 

and how they communicate with one another and with other systems; 

6. Use a range of computer technology safely and responsibly, and to create useful 

products and services. 

  



 

14 
 

Syllabus Aims 
 
The syllabus aims to provide students with the foundation to continue with further studies in 
computing and skills to participate in a rapidly changing technological environment so that 
the concepts and skills learnt would also be applicable in other fields that require computing. 
The two-year course at upper secondary level is to enable students to: 
 

1. Apply logical reasoning and algorithmic thinking5 in analysing problem situations and 

developing solutions; 

2. Develop simple programs through the use of appropriate programming language(s);  

3. Understand how and where information communications technology (ICT)6 is used in 

daily life; 

4. Understand and explain the ethical, social and economic issues associated with the 

use of ICT. 

Students will be taught how data can be managed and processed by using functions and 
formulas in a spreadsheet application to produce information and inform decision making; 
how digital systems work and how this knowledge can be used to create safe homes and 
secured networks; and how to use the computer efficiently and effectively to code solutions 
for problem situations. Details of what the students will be taught are in the following section.  

                                                      
5 Algorithmic thinking is a way of getting to a solution through clear definition of the steps. Instead of a single answer, a set 
of instructions or rules is developed, that if followed precisely leads to answers. 
6 Information and Communications Technology (ICT) refers broadly to technology involving computing devices, software 
and other hardware. 



 

15 
 

 
 
 
 
 
 
 

 

 
SECTION 2: 

CONTENT  
 

Syllabus Overview 
Module I: Data and Information 

Module II: Systems and Communications 
Module III: Abstraction and Algorithms 

Module IV: Programming 
Curriculum Time 

 

  



 

16 
 

2. CONTENT 

 
Syllabus Overview 
 
This syllabus comprises four modules of study to cover five common areas of computer 
science concepts and skills. The study is undertaken at the upper secondary levels for two 
years. The four modules and the units of study for each module are as listed with details in 
subsequent pages. Schools are encouraged to have in place, at lower secondary levels, a 
computer science programme that gives students a firm foundation to undertake the subject 
at upper secondary levels.  
 
The four modules are: 
 

Module I – Data and Information  

• Data Management 

• Data Representation  

• Ethical, Social and Economic Issues 

 
Module II – Systems and Communications 

• Computer Architecture 

• Data Communications 

 
Module III – Abstraction and Algorithms 

• Problem Analysis 

• Algorithm Design 

 
Module IV – Programming 

• Program Development 

• Program Testing 

 
Although the modules are presented as individual modules emphasising software or 
hardware, the value of computing lies in the integrative use of software and hardware to 
create new artefacts and solve or address real-world problems. Thus, teaching and learning 
approaches should leverage on the inter-connectedness of these modules and skilful 
integration of the learning objectives. 

  



 

17 
 

Module I: Data and Information 
 
This module is about the handling and processing of data in computer systems, as well as the 
need to be ethical when dealing with data. Students should be able to identify different types 
of data, understand and explain what the data is for, and explain how the data is represented 
or organised for processing and output, with reference to a given problem. Students will be 
more aware of ethical issues with respect to data, including privacy of data. There are three 
units of study in this module: 
 

1.1 Data Management 

1.2 Data Representation 

1.3 Ethical, Social and Economic Issues 

 
1.1 Data Management 
 
This unit of study emphasises logical thinking and reasoning through data analysis, data 
processing and visual representations of data. Students will use the spread sheet application 
software in hands-on activities to enhance learning of functions and formulae to compute and 
process data. 

Ref Learning outcome Notes for teacher 

 Students should be able to  
1.1.1 Tabulate data under appropriate column headings 

(i.e. data field names) and data types (e.g. 
numeric, text and date). 
 
Exclude: plotting of charts 
 

Organise and categorise data by 
putting them in columns with 
meaningful headings. Explain that the 
columns represent the structure of 
the data table. 
 
Highlight the need to format (cells in) 
columns accordingly for the different 
data types used.  
 

1.1.2 (a) Use mathematical operators, functions and 
what-if data analysis (goal seeking) to prepare 
spreadsheets and solve real-world problems 
such as 

- find the total of a list of numbers, average 
of a list of numbers, min/max of a list of 
numbers, square root of a number, simple 
interest, remainder after division of 
numbers; 

- round values; 

- randomise values; 

- convert data from one type to another 
(e.g. get integer values from decimal 
values); and 

- count number of data items. 

Give examples of problem situations 
where these functions are applied. 
 
Explain and illustrate the difference 
between absolute and relative cell 
referencing.  
 
 



 

18 
 

Ref Learning outcome Notes for teacher 

 Students should be able to  
(b) Understand and use conditional statements 

(simple and nested): COUNTIF and IF with 
relational and Boolean operators such as AND, 
NOT and OR.  

Include: conditional formatting 

(c) Use functions effectively to look up data in 
rows or columns (horizontal and vertical table 
lookups) in a list or table for data processing. 

 
The list of 33 examinable functions are: 

Area  Function 

Date and Time TODAY 

Text LEFT, LEN, MID, RIGHT 

Logical AND, IF, NOT, OR 

Lookup HLOOKUP, VLOOKUP 

Mathematical CEILING.MATH, FLOOR.MATH, 
MOD, POWER, QUOTIENT, RAND, 
RANDBETWEEN, ROUND, SQRT, 
SUM, SUMIF 

Statistical AVERAGE, COUNT, COUNTA, 
COUNTBLANK, COUNTIF, LARGE, 
MAX, MEDIAN, MIN, MODE.SNGL, 
SMALL 

 
Students should be able to use absolute and 
relative cell referencing. 

Students should not be penalised for using 
equivalent functions not listed. 

 
1.2 Data Representation 
 
This unit of study explains how data is represented internally as binary numbers, how the 
conversion of data from one number system to another is done, and where these number 
systems are used. The number systems covered here are binary number system, decimal 
number system and hexadecimal number system. 
 

Ref Learning outcome Notes for teacher 

 Students should be able to  
1.2.1 Represent positive whole numbers in binary form. 

 
Bit = binary digit and is 0 or 1. 

1.2.2 Convert positive whole numbers from one 
number system to another - binary, denary and 
hexadecimal; and describe the technique used. 
 

The data is represented in not more 
than 16 bits, and the description of 
the conversion techniques should be 
in short prose. 
 



 

19 
 

Ref Learning outcome Notes for teacher 

 Students should be able to  
1.2.3 Describe situations in which the number systems 

are used such as ASCII codes, IP (Internet 
Protocol) and Media Access Control (MAC) 
addresses, and RGB codes. 

Explain how the number system is 
being used in each of the specified 
areas. 

 
1.3 Ethical, Social and Economic Issues 
 
This unit of study covers ethical use and security of data in desktop applications or 
applications on networks like the internet. Social and economic issues arising from the use of 
computing technologies in workplace settings are discussed. 
 

Ref Learning outcome Notes for teacher 

 Students should be able to  
1.3.1 Understand how data can be kept safe from 

accidental damage due to data corruption or 
human errors and malicious actions such as 
unauthorised viewing, deleting, copying and 
corrupting or malware. 
 

Understand and explain measures 
that could be taken such as: 

• Backup data  

• Safe and secure storage of data 

• Use of passwords and/or 
biometrics 

• Different levels of access rights 
for different levels of use 

1.3.2 Understand the effects of threats to privacy and 
security of data from spam, spyware, cookies, 
phishing, pharming and unauthorised access as 
well as defensive measures employed such as the 
use of appropriate hardware and software. 

There is a need to keep abreast with 
the trends from time to time. 
 
 

1.3.3 Describe ethical issues that relate to the use of 
computers, public/private networks, freeware, 
shareware and open courseware; and the sharing 
of information.  

Good to know what “Creative 
Commons Licensing” is and how 
people should behave when 
accessing resources on private and 
public networks. 

1.3.4 Compare the positive and negative social and 
economic impacts of technology in education, 
communication (e.g. via mobile apps and social 
media), finance, medicine/healthcare, 
transportation and entertainment; and explain 
plagiarism and software piracy. 
 

The different careers in computing 
and the use of computing technology 
will provide contexts for discussion of 
ethical, social and economic issues. 
 
Give examples of situations where 
plagiarism and software piracy could 
occur and why. 

 
  



 

20 
 

Module II: Systems and Communications 
 
This module is about systems involving computer technology and computing devices. 
Students will learn the inter-relationships between parts and whole of a system; as well as 
the functions of parts of systems in enabling communications between human and computing 
device (machine), machine and machine, and within a machine. There are two units of study: 
 

2.1 Computer Architecture 
2.2 Data Communications 

 
2.1 Computer Architecture 
 
This unit of study covers the basic computer architecture and components of a computer 
network. Students will understand the purpose of hardware and software required in a 
computer system or network but they are not required to know how these work technically. 
Students will have the opportunity to work with hardware components and understand the 
integrative use of hardware and software through learning by doing. 
 

Ref Learning outcome Notes for teacher 

 Students should be able to  
2.1.1 Describe basic computer architecture with 

reference to 
- Computer processor 
- Memory  
- Data and address buses 
- Input (e.g. data and instructions) and output 

(e.g. intermediate and final results of 
processing) 

- Storage media 
 
Exclude: Fetch and execute cycle 

The focus is on the “internals” of a 
computer. No technical details are 
needed.   
 

2.1.2 Recognise a logic gate from its truth table and 
evaluate Boolean statements by means of truth 
tables.  

Know and understand the truth table 
for each of the following logic gates: 
AND, OR, NOT, NAND, and NOR. 
 
Source for simple DIY kits as a 
teaching aid to enhance learning 
through a hands-on approach.  

2.1.3 Construct the truth tables for given logic circuits 
(maximum 3 inputs). 

2.1.4 Design and construct simple logic circuits using 
AND, OR, NOT, NAND and NOR. 

 
 
  



 

21 
 

2.2 Data Communications 
 
This unit of study uses networks as the context for understanding sharing of resources and 
data communications. Students should have a general understanding of how data is 
transmitted and the need to check for data accuracy and data security in transmissions. 
 

Ref Learning outcome Notes for teacher 

 Students should be able to  
2.2.1 Identify and explain the function of different 

network hardware: modem, network interface 
controller, hub, switch and router. 
 

Name each device and explain its 
function but no technical details about 
how each device operates are needed.  
 
It may be necessary to explain what a 
modem (modulator-demodulator) is. 
 
It is assumed that students know the 
following input and output devices: 

• Monitor 

• Keyboard 

• Mouse 

• Printer/plotter 

• Scanner 

• Web camera 
 

2.2.2 Describe the difference between wired and 
wireless networks and explain the factors that will 
determine the use of each type of network. 
 
Include: descriptions of LAN/MAN/WAN 

2.2.3 Describe the components for a simple home 
network and design a simple home network.  

The components could be all or part of 
those mentioned in 2.2.1. Related 
concepts include IP (internet protocol) 
address, MAC (media access control) 
address, ports, SSID (service set 
identifier) and access points. As part 
of hands-on activities to enhance 
learning, students may engage in the 
setting up of a simple network. 
 

2.2.4 Compare and contrast client-server and peer-to-
peer network strategies with emphasis on: 
- Purpose 
- Function 
- Organisation 
- Bandwidth 

 
Include: topology principles of bus, ring and star 
networks 
 
 

Function refers to how the network 
operates. Organisation refers to how 
the hardware components are laid out 
or connected. Speed can be 
mentioned under bandwidth. 
 
It is not required to know technical 
details about the industry standards 
or materials used to manufacture any 
of the items in a network. 
  

2.2.5 Explain the use of parity and checksums in data 
transmission. 
 

Use 8 – 16 bit patterns. 

 
  



 

22 
 

Module III: Abstraction and Algorithms 
 
This module is about problem solving and how a problem may be solved by breaking it into 
smaller, manageable parts and solving all the smaller parts. An algorithm describes a solution 
for the problem that is independent of a programming language and may be presented in 
pseudo-code (where program structures will be more pronounced) or diagrammatically 
(flowchart). Students should be able to know the difference between pseudo-code and 
flowchart.  There are two units of study: 
 

3.1 Problem Analysis 
3.2 Algorithm Design 

 
3.1 Problem Analysis 
 
This unit of study covers problem interpretation and analysis. Students will learn how to 
approach problem solving in a systematic manner. They will learn problem-solving strategies 
like breaking a problem into its parts and solving the problem by first solving the individual 
parts. They will have opportunities to reinforce their understanding through hands-on 
activities in solving simple real-world problems. 
 

Ref Learning outcome Notes for teacher 

 Students should be able to  
3.1.1 For a given problem, specify the 

• inputs and the requirements for valid 
inputs 

• outputs and the requirements for correct 
outputs 
 

Examples: 

• Business: produce an itemised list of 
items purchased, cost of each item, total 
cost payable (like a receipt) or calculate 
interest on mortgages and print 
instalments over a period of time 

• Education: find and print the student 
with the top score in each subject or 
check user inputs against expected input 
(like test scoring); find the mean subject 
grade (MSG) for a class 

• Scientific/Mathematics: determine 
whether an input number is odd or even 
and whether a number is divisible by 
another number  

• Entertainment: a number guessing game 
or any game involving text manipulation 
 

Students should be able to express a 
given problem as a computational 
problem and be able to write the 
solutions for these problems in the 
form of algorithms. 
 
 



 

23 
 

Ref Learning outcome Notes for teacher 

 Students should be able to  
3.1.2 Solve problems by decomposing7 them into 

smaller and manageable parts. 
 

Students should be able to identify 
the parts and create solutions for the 
parts. They will then test these 
partial solutions and the total 
solution where the partial solutions 
are put together. 
 

3.1.3 Identify common elements across similar 
problems and state generalisations8. 
 

 
  
3.2 Algorithm Design 
 
This unit of study is about interpreting and understanding algorithms; correcting and writing 
algorithms for given problems; as well as refinement of algorithms. Students’ learning will be 
enhanced through written exercises, classroom discussions and presentations. 
 

Ref Learning outcome Notes for teacher 

 Students should be able to  
3.2.1 Perform a dry run of a set of steps to determine 

its purpose and/or output. 
 

This method could be used to check 
for logic errors or mistakes in faulty 
algorithms. 

3.2.2 Produce trace tables to show values of variables 
at each stage in a set of steps. 
 

3.2.3 Locate logic errors in an algorithm, and correct 
or modify an algorithm to remove the errors or 
for changes in task specification. 
 

Find and identify logic errors in 
algorithms with the intent of 
correcting or modifying the 
algorithms.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                      
7 Decomposition is a way of thinking about problems, algorithms, artefacts, processes and systems in terms of their parts. 
The parts can then be understood, solved, developed and evaluated separately. This approach makes it easier to solve 
complex problems and design large systems.  
8 Generalisation is a way of quickly solving new problems based on previous problems that had been solved. That is, the 
algorithm that works for a previous specific problem is adapted so that it solves a whole class of similar problems through 
the identification of patterns and commonalities in problems, processes, solutions, or data. 



 

24 
 

3.2.4 Produce an algorithm to solve a problem, either 
as a flowchart or in pseudo-code. The following 
pseudo-code keywords and constructs should be 
used: 
• INPUT/ OUTPUT 
• IF… THEN…ELSEIF… ELSE… ENDIF 
• WHILE… ENDWHILE 
• FOR… NEXT 

To make it easier for students to 
switch between pseudo-code and 
Python code, teachers can present 
pseudo-code to students in the 
following style:   

• list indices should start from 0 

• assignment operations should be 
represented by  “=”  

• equality should be represented 
by “==” 

• inequality should be represented 
by “!=” 

 
Teachers should be aware that 
students are not required to follow 
this style in their examination 
answers. By definition, pseudo-code 
is not a programming language with a 
defined, mandatory syntax. Any 
pseudo-code presented by students 
will be assessed for the logic of the 
solution presented – where the logic 
is understood, and correctly solves 
the problem addressed, the student 
should be given credit regardless of 
whether the student has followed the 
style above. Using a recommended 
style will, however, enable the 
student to communicate their 
solution more effectively. 
[extracted from Pseudocode Guide 
for Teachers Cambridge International 
AS & A Level] 
 
For flowcharts, please refer to Annex 
B (Quick Reference for Flowcharting). 

 
 

 



 

25 
 

Module IV: Programming 

This module is about application and development of logical thinking and reasoning, as well 
as problem-solving skills through the design and development of software solutions using 
programming language(s). An algorithm describes a solution independent of a programming 
language while a programming language depicts the solution that is workable on a computing 
device. Students will get to test whether their algorithms work as planned when they run the 
programming solutions. There are two units of study: 
 

4.1 Program Development 
4.2 Program Testing 

 
4.1 Program Development 
 
This unit of study covers the development of programming solutions (coding) for simple 
problem situations. Students will reinforce their understanding through practical work. 
Python is the programming language for this syllabus. 
 

Ref Learning outcome Notes for teacher 

 Students should be able to  
4.1.1 Understand and describe the stages in developing 

a program: gather requirements, plan solutions, 
write code, test and refine code, deploy code. 
 

Revisit the tools that can be used for 
planning.  
 
Run through all the stages in the 
formulation of a programming 
solution for a problem situation so 
that it becomes a thinking routine. 
 

4.1.2 Understand and use sequence, selection and 
iteration constructs to create a program. 
 

Python is the programming language 
for this syllabus. The style of the 
programming language must be 
adhered to and good practices 
emphasised. 
 
For example,  

• variable names should be 
lowercase, with words separated 
by underscores to improve 
readability 

• constants are usually written in 
all capital letters with 
underscores separating words. 
 

4.1.3 Use and justify the use of variables, constants and 
simple lists in different problem contexts. 
 

 

 

  



 

26 
 

4.1.4 Understand and use different data types 
(integers, floating-point numbers, strings, 
Booleans, lists) and built-in functions. 

Refer to Annex A for a list of built-in 
functions that should be covered. 
 
Generally, built-in functions help to 
simplify code and can be used in 
programming solutions. However, the 
use of built-in functions should not 
trivialise a problem’s main task. 
 
Problems should specify any 
restrictions they may have on the use 
of built-in functions. However, this 
may not always be possible given the 
large number of functions in Python’s 
built-in library. For example, where 
the main task is to find: 
 
(a) the smallest number in a given list, 
students should know and be able to 
write out the steps for the process. 
They should not be allowed to use the 
built-in function, min(). 
 
(b) which month has the lowest 
rainfall for the past year given daily 
rainfall, students should be allowed 
to use the built-in function, min(), 
after rainfall values for each month 
are calculated and stored in a list. 
 

4.1.5 Produce programming solution for a given 
problem to 

• find min/max value in a list 

• find average of a list of numeric values 

• search for an item in a list and report the 
result of the search 

• find check digits 

• find the length of a string of characters 

• extract required characters from a string of 
characters 
 

This may include but not limited to 
the following skills: 

- Compare two items 
- Interchange two items 
- Use of mathematical 

formulae 
 
A string may contain letters, digits or 
symbols (e.g. + and :). 
 
 

4.1.6 Write and use user-defined functions. 
 

Keyword arguments are excluded. 

 

  



 

27 
 

4.2 Program Testing 

This unit of study covers the testing and refinement of programs based on test results. 
Students will learn the appropriate use of test cases and what type of testing is necessary 
and/or sufficient. Students will reinforce their learning and understanding through hands-on 
practical work. Python is the programming language for this syllabus.  
 

Ref Learning outcome Notes for teacher 

 Students should be able to  
4.2.1 Identify and justify the use of data validation 

techniques. 
 

Exclude: Validation of data type (type 
check). This means that students do 
not have to write programs to check 
for data types. Type check is excluded 
as error messages will usually be 
generated by the programming 
language interpreter.  
 

4.2.2 Validate input data for acceptance by performing  

• length check,  

• range check,  

• presence check, and  

• format check 
 
 

4.2.3 Design appropriate test cases to cover normal, 
error and boundary conditions, and specify what 
is being tested for each test case. 
 

Boundary – lower and upper limits. 
 

4.2.4 Understand and describe types of program errors: 
syntax, logic and run-time; and explain why they 
occur. 
 

 

4.2.5 Explain how translators are used to detect syntax 
errors and state the difference between 
interpreter and compiler translators. 
 
 

4.2.6 Understand and apply debugging techniques to 
isolate/identify and debug program errors: using 
intermittent print statements, walking through or 
testing a program in small chunks or by parts.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 



 

28 
 

 
  



 

29 
 

Curriculum Time 
 
The total curriculum time for O-Level Computing is 46 weeks with 3 hours per week (144 hours) 
over 2 years. A summary of the estimated number of weeks and hours for the topics or 
content explications per module is provided in Table 2.1.  
 

Table 2.1: Curriculum Time per Module 
 

Content Details 
Estimated Curriculum Time 

~ No. of Weeks ~ No. of Hours 

Module I: Data and Information 9 27 
1.1: Data Management      

    a. Data Tabulation, Conditional Statements and   
        Operators 

4 12 
    b. Mathematical and Statistical Functions 

    c. Data Lookup, Boolean, Date and String Functions 

 

1.2: Data Representation      

    a. Number Systems 2 6 

 

1.3: Ethical, Social and Economic Issues      

    a. Data Safety and Access 1 3 

    b. Social and Economic Impacts 1 3 

    c. Ethical Issues 1 3 

 

Module II: Systems and Communications 8 24 
2.1: Computer Architecture      

    a. Basic Hardware Components 1 3 

    b. Boolean Logic and Logic Gates 1 3 

    c. Logic Circuits and Truth Tables 1 3 

 

2.2: Data Communications     

    a. Introduction to Networks 
2 6 

    b. Wired and Wireless Networks 

    c. Home Network 
2 6 

    d. Client-Server vs Peer-to-Peer Network 

    e. Parity and Checksums 1 3 

 

Module 3: Abstraction and Algorithms 8 24 
3.1: Problem Analysis      

    a. Problem Statements 1 3 

    b. Modularity and Generalisation 1 3 

 

3.2: Algorithm Design     

    a. Pseudo-code  1 3 

    b. Program Flowchart and Flowchart Symbols 2 6 



 

30 
 

    c. Dry Runs and Trace Tables 1 3 

    d. Logic Errors 2 6 

  

Module 4: Programming 15 45 
4.1: Program Development     

    a. Concept of a program and Program Constructs 1 3 

    b. Python Syntax, Constants and Variables 
2 6 

    c. Arithmetic and Relational Operators 

    d. Numeric Data Types 
2 6 

    e. Data Types - Strings and Console Input/output 

    f. Selection Statements 2 6 

    g. Loops 2 6 

    h. Lists 2 6 

    i. User-defined functions 1 3 

  

4.2: Program Testing     

    a. Test Cases 1 3 

    b. Program Errors & Translators 
1 3 

    c. Debugging Techniques 

    d. Data Validation  1 3 

 

Python Mini Project 6 18 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

31 
 

 

 
 
 
 

SECTION 3: 
PEDAGOGY  

 
Applied Learning 

Learn by Doing 
Teaching Actions 

Resources 
Hardware and Software 

 

  



 

32 
 

3. PEDAGOGY 

 
Applied Learning 
 
As an applied subject, there is greater emphasis on learning by doing in the real-world 
context. The pedagogies and activities used must thus be suitable for applied learning. In 
addition, it is intended that students be provided with opportunities to acquire 21st Century 
Competencies through applied learning. 
 
 21st Century Competencies (21CC) 
 
Table 3.1 illustrates how the O-Level Computing curriculum is aligned with the Standards and 
Benchmarks for 21CC. To illustrate, students will develop critical and inventive thinking skills 
(2.1d) when they are tasked to design a program to compute point-of-sales receipts. The 
students will need to assess information and process requirements, and analyse costs and 
benefits before applying sound reasoning and decision-making to propose a feasible solution 
with respect to the hardware and software to be acquired.  
 
 

Table 3.1: Alignment with 21CC Standards and Benchmarks 
 

O-Level Computing Competencies and 
Attitudes 

21st Century Competencies Benchmarks 
(By end of S4/S5) 

Computer as a Science Critical and Inventive Thinking (CIT) 

Ability to brainstorm ideas for problem 
solutions. 

1.1d: The student is able to generate 
ideas and explore different pathways that 
lead to solutions. 

Ability to apply computational thinking by: 

• synthesizing knowledge and skills 
from the five core Computer Science 
areas; and 

• applying formal reasoning and 
systems thinking in the analysis, 
design and implementation of 
computer solutions. 

2.1d: The student is able to use evidence 
and adopt different viewpoints to explain 
his/ her reasoning and decisions, having 
considered the implications of the 
relationship among different viewpoints. 

Ability to debug and refine computer 
programs (computational thinking).  

2.2d: The student is able to suspend 
judgement, reassess conclusions and 
consider alternatives to refine his/ her 
thoughts, attitudes, behaviour and 
actions. 

 
 
 



 

33 
 

Ability to: 

•  analyse and simplify problems into 
manageable tasks (analytical 
thinking); 

•  persist in developing computer 
solutions for the problems 
(resilience); and 

•  evaluate solutions using test cases 
(evaluative thinking).  

3.1d: The student is able to identify 
essential elements of complex tasks, stay 
focused on them, take on diverse roles 
and persevere when they encounter 
difficulties and unexpected challenges. 

 

Computer as a Tool Information and Communication Skills 
(ICS) 

Ability to explain and communicate 
programming solutions. 

1.2d: The student is able to use 
information and ideas developed 
collectively with others to create new 
information, products and/ or solutions. 

Ability to be resourceful in searching for 
pertinent information required to solve the 
problem. 

2.1d: The student is able to integrate 
information from a variety of sources to 
complete a task. 

Computer in Society Civic Literacy, Global Awareness and 
Cross-cultural Skills (CGC) 

Ability to understand data protection, 
copyright issues and intellectual property 
rights. 

1.1d: The student is able to discuss issues 
that affect the culture, socio-economic 
development, governance, future and 
identity of Singapore and use evidence to 
support their viewpoints. 

Adopt ethical practices in cyberspace and 
social media. 

 
Authentic Situations 
 
Real case studies on data protection, for example, will be used for students to inquire the 
need for data privacy and integrity, and to compare/contrast the different measures of data 
protection. Students will realise the dangers and understand the mistakes made by others 
through online transactions or sharing of information via the internet; and will learn to be 
discerning and careful with their personal information while adopting ethical practices in 
cyberspace. 

 
  



 

34 
 

Learn by Doing 
 
A wide range of pedagogies is recommended for the teaching of O-Level Computing. For 
example, using a flipped classroom approach, the students may watch a video (at their own 
time) on the design considerations and actual setup of a simple wireless network in a home 
or business setting. The students will then set up a simple network physically in the computer 
classroom or use a web-based similar available in the Student Learning Space and learn by 
doing. While the pedagogies applied are dependent on the nature of the topic, a problem-
driven approach could be used.  
 
 
Problem Tasks 
 
A set of carefully designed tasks will be developed for teachers to take the students through 
the learning objectives of the O-Level Computing syllabus over the two years of study. These 
tasks and the experiential learning through individual, paired or group work coupled with 
discussions and reflections will allow students to acquire and develop the 21st Century 
competencies.  
 
Details of lesson plans and lesson ideas will be provided in the teaching and learning guide. 
The use of code is an essential part of testing the algorithms developed and a manifestation 
of algorithmic thinking (Syllabus Aim 1) and hence, computational thinking. Thus, the teacher 
must be aware of the possible lab-based activities that could support or enhance student’s 
learning. The following examples are provided to illustrate possible problem tasks for O-Level 
Computing. 
 
Example 1 
A snack shop sells the following items: 
  Item   Selling price 
  Bun   $0.80 
  Coffee   $1.20 
  Cake   $1.50 
  Mango pudding $1.80 
  Fruit salad  $3.20 
 
Write a program which  

(a) captures the items sold each day, 
(b) ends the input of items when “XXX” is entered as item name, 
(c) finds the total number of items sold, 
(d) finds the total amount of money collected for the day, 
(e) finds the item that sold the most for the day, 
(f) displays the total amount of money collected for the day, and 
(g) displays the item that sold the most for the day. 

 
 
 
 



 

35 
 

Example 2 
Write a program which 

(a) reads in from the keyboard a positive whole number, 
(b) determines the number of digits in the positive whole number,   
(c) displays the positive whole number and the number of digits, 
(d) reverses the order of the digits in the whole number and add this new whole number 

to the original number, and 
(e) displays the sum of these two whole numbers. 

 
Example 3 
Write a program which 

(a) reads a word or phrase from the keyboard, 
(b) counts the frequency of each vowel in the word or phrase, 
(c) finds the vowel that appears the most, 
(d) displays each vowel and its frequency, and 
(e) displays the vowel with the highest frequency. 

 
Programming Project 
 
Students will also be involved in a school-based programming project over 6 weeks where 
they will have to apply computational thinking to create programming solutions for one or 
more tasks. Students may work independently, in pairs or as a group depending on the project. 
They may find their own projects to work on. 
 
A blended learning approach will be recommended for the programming project as the 
specific purpose is to find out how well students have learnt the programming and computing 
concepts and their ability to perform the various tasks expected of them; as well as to rectify 
gaps in pedagogical scaffolding when students learn by doing and self-direct their own 
learning. The students can consult the teachers or any other resource persons. They may also 
learn from the resources available on the internet. 
 
The programming project also provides an opportunity for students to showcase their 
innovative skills while developing a practical computational solution. These skills will be 
evident in the design and algorithmic thinking as well as rigorous testing of the developed 
product. 
 
Examples of Python programming projects: 

• Monitor temperature: You will construct a device to monitor the temperature of 
anything, e.g. fish tank, bath water or fridge; using a Raspberry Pi and a waterproof 
temperature sensor as the main components. The project can be extended to turn the 
setup into an Internet of Things (IoT) device that would text you when the 
temperature gets too hot. (Reference: Simon Monk, learn.adafruit.com) 
 

• Minecraft Pi: You can explore the virtual world of Minecraft Pi, the special edition of 
Minecraft made for Raspberry Pi. You will manually build blocks and use the Python 
interface to manipulate the world around you, create a new world and post text to 
the chat window. (Reference: raspberrypi.org) 



 

36 
 

There are also several other Raspberry Pi projects. For example, 

• Donald Norris, Raspberry Pi Projects for the Evil Genius 

• Simon Monk, Raspberry Pi Cookbook 
 
Besides the Raspberry Pi projects, there are projects with the Arduino board that students 
could engage in but Python may not be the programming language used. For example, 

• John Boxall, Arduino Workshop – A hands-on introduction with 65 projects 

• Simon Monk, 30 Arduino Projects for the Evil Genius 
 
Student Learning Space 
 
Students’ programming assignments could be graded by teachers or through an online 
grading system. Feedback on students’ work could be provided by teachers or the online 
system. Students could check and clarify their understanding with the teacher during contact 
time.  

 
Teaching Actions 

Table 3.2 below provides examples of how Teaching Actions from Singapore Teaching 
Practices (STP)9 can be enacted during Computing lessons.  

 

Table 3.2: Teaching Actions applicable to teaching of Computing 
 

Teaching Areas Teaching Actions Examples of how it can be used in the 
classroom 

Arousing 
Interest 

Discrepant Events 
Teachers use a discrepant 
event to introduce to a 
surprising outcome that 
students do not expect thus 
arousing interest. 

• Teachers get students to predict the 
outcome of a program and compare with 
the actual outcome. The students can 
then embark on further discussion on why 
they are different. 

• Teachers give students a program with 
errors to get them to identify and correct 
the errors. 

Providing Clear 
Explanation 
 

Demonstration  
Teachers demonstrate a ‘walk 
through’ of a new skill during 
which students learn by 
observing.  

• Teachers demonstrate solving a 
programming task from scratch to show 
the thinking processes and techniques 
involved when developing a program. 

Using 
Questions to 
Deepen 
Learning 

Initiate-Response-Feedback 
Chains  
Teachers use questions to 
elicit, probe and scaffold 
students’ thinking. 

• Teachers ask questions such as “What 
makes you say that?” after students have 
given a response to help students identify 
the basis for their thinking as they 
elaborate on the reasoning behind their 
responses. 

                                                      
9 Visit https://opal.moe.edu.sg/stp for more information on STP. 

https://opal.moe.edu.sg/stp
https://opal.moe.edu.sg/stp


 

37 
 

 
Table 3.2: Teaching Actions applicable to teaching of Computing (continued) 

 

Encouraging 
Learner 
Engagement 
 

Explore, Engage, Apply 
Teachers design learning activities 
that are meaningful and relevant to 
students. 

• Teachers prepare cards (in powers 
of 2) to demonstrate conversion 
from denary to binary.10 

• Teachers introduce programming 
concept of looping through the use 
of dance moves (e.g.  Macarena). 

Engagement through Collaboration 
and Interactivity  
Teachers assign students to work 
collaboratively in pairs. One student 
(the driver) has control of the 
keyboard and mouse, while the other 
(the navigator) looks at the big 
picture and provides comments. The 
students are to switch roles from 
time to time. 

• Teachers carry out pair 
programming by pairing students 
of similar ability, assigning one to 
be the ‘driver’ and the other the 
‘navigator’. The driver writes the 
program while the navigator 
considers the requirements and 
checks for errors.  
 

Facilitating 
Collaborative 
Learning 

Think-pair-share   
Students first think through a 
problem alone and then discuss in 
pairs. This is followed by 
consolidation led by teacher with the 
whole class. 

• Teachers use think-pair-share to 
identify and generate test cases for 
a programming task. 

 

Resources 
 
There will be affordances for ICT and self-directed learning through the use of resources from 
the online learning portal for teachers and students. There will be instructional materials in 
the form of textbook, task sheets and worksheets to support teaching and learning. A quick 
reference on Python programming language constructs and elements (see Annex A) is 
provided for students’ use in lab-based activities during curriculum study or examination.  

 
 

 
  

                                                      
10 Visit https://classic.csunplugged.org/binary-numbers/  for more information. 
 

https://classic.csunplugged.org/binary-numbers/
https://classic.csunplugged.org/binary-numbers/


 

38 
 

Hardware and Software 
 
The list of recommended software is: 

• Microsoft Office Productivity Suite 

• Python Programming Language 
 
Schools may, at their own discretion, use other software to aid in the teaching and learning 
of computing concepts. 
 
Schools can also use appropriate hardware to allow students to apply what they have learned 
or to have a better understanding of computing concepts. For example, schools can use the 
Raspberry Pi, microcontrollers and programmable gadgets to teach computer concepts like 
computer architecture and simple computer or network system. Students can develop 
creativity and inventive skills by programming these devices to create useful innovative 
products with real-world applications. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 



 

39 
 

 

 

 

 

 

 

 

 

 

SECTION 4: 
ASSESSMENT  

 
School-based Assessment 

Objectives of National Examination 
Scheme of National Examination 

 
 

  



 

40 
 

4. ASSESSMENT 

 
School-based Assessment 
 
Assessment for Learning 
 
Students are provided with opportunities for deep and enriched learning experience through 
the use of online learning environments in the Student Learning Space or the internet. They 
can monitor and self-regulate their pace and progress of learning. They receive immediate 
feedback from these learning environments on errors in their programming solutions and 
whether the outcomes of their programming solutions are as intended. 
 
The six weeks set aside for the programming project will enable students to collaborate and 
learn from one another. Besides assessment for learning, assessment of learning also takes 
place when students apply programming concepts and skills that they have learnt to the 
project. Computational thinking would also be developed and if the project is done on a group 
basis, students would also learn to explore different pathways to solutions and enhance 
communication skills. 
 
Assessment of Learning 
 
The Student Learning Space will also allow students to assess their learning as well as learn 
from the assessment tasks. School-based assessment can also consist of timed written and 
practical assessment of students’ understanding of the four modules in the syllabus. The 
questions should test more on students’ understanding and application of concepts and skills 
learnt, and less on recall of information. The written paper may comprise short-structured 
questions of variable mark values.  
 
A sample lab-based paper may consist of a spreadsheet task and one or two programming 
tasks. Alternatively, the paper may consist of a series of planning and progressively developed 
tasks culminating in a final programming solution. 
 
The format of the assessment papers may also be modelled after the format of the national 
examinations. The marks for school-based assessment may be used for reporting students’ 
performance at end of Semesters. 
 

  



 

41 
 

National Examination 
 
Assessment Objectives 
The examination will assess:   

a) Knowledge and understanding of basic computing technology and systems, 
concepts, algorithms, techniques and tools; 

b) Application of knowledge and understanding to analyse and solve computing 
problems;  

c) Development, testing and refinement of solutions using appropriate software 
application(s) and/or programming language(s).  

The weighting for each assessment objective is shown in Table 4.1. 

Table 4.1 Specification Grid 

Ref Assessment Objective Weighting 
in Paper 1 

Weighting 
in Paper 2 

Overall 
Weighting 

(a) 
  

Knowledge and understanding ~ 35% ~ 5% 40% 

(b) 
  

Application ~ 25% ~ 5% 30% 

(c) 
  

Development, testing and refinement ~10% ~20% 30% 

TOTAL 70% 30% 100% 

 
Students can handle and process data in computer systems, as well as the need to be ethical 
when dealing with data. They will demonstrate problem-solving techniques through analysing 
and writing programming solutions for a range of computing problems in business, education, 
mathematics and science. Students will be able to demonstrate computational thinking 
through the design and development of programming solutions. 
 

Scheme of National Examination 
 
Mode of Examination 
 
All candidates will offer Paper 1 and Paper 2. All questions are compulsory in both papers.  
 
Paper 1 (Written examination, 2 hours) 
This paper tests knowledge, understanding and application of concepts and skills in all the 
four modules. The questions consist of a mixture of  

• short answer questions  

• matching questions  

• cloze passage  

• structured questions 
 
This paper carries 70% of the total marks, and is marked out of 80 marks. 



 

42 
 

Paper 2 (Lab-Based Examination, 2 hours 30 minutes)  
This paper, taken with the use of a computer, spreadsheet and programming11 software, 
tests Module 1 (Unit 1.1: Data Management) and Module 4 (Programming). Four structured 
questions will be set based on the following topics: 

• Use of spreadsheet functions and features  
• Refinement of program  
• Debugging of program  
• Development of program with no more than 40 lines  

 
Development of program will carry 20 marks. The remaining three questions average 10 
marks. 
 
A quick reference for Python will be provided for candidates. 
 
Candidates will submit soft copies of the required work for marking. The allotted time 
includes time for saving the required work in the candidates’ computer. This paper carries 
30% of the total marks, and is marked out of 50 marks. 
 
Table 4.2 summarises the formats of the two compulsory papers. 
 

Table 4.2: Format of Papers 

Paper Mode Duration Weighting Marks Format Modules 
Assessed 

1 Written 2 hours 70% 80 A mixture of 

• Short-answer 
questions 

• Matching questions 

• Cloze passage 

• Structured 
questions 

All the four 
modules 

2 Lab-
based 
practical 
exam 

2 hours 
30 

minutes 

30% 50 4 compulsory 
structured questions  

• Use of spreadsheet 
functions and 
features 

• Refinement of 
programme 

• Debugging of 
programme 

• Development of 
programme with 
no more than 40 
lines of code  

 

Unit 1.1 Data 
Management 
from module 
1 
Module 4: 
Programming  

                                                      
11 The centre will be required to declare the programming language(s) to be used for the examination before the 

centre begins teaching the course for the cohort taking the examination. 



 

43 
 

Development of 
programme will carry 
20 marks. The 
remaining three 
questions will carry an 
average of 10 marks 
per question. 
 
A quick reference for 
Python will be 
provided for 
candidates. 

 
Use of Calculator 

An approved calculator may be used in Paper 1 and Paper 2. 
 
Centre Infrastructure for Lab-based Examination 
The Centre will ensure adequate hardware and software facilities to support the examination 
of its candidates for Paper 2, which will be administered over at most two shifts on the day of 
the examination. Each candidate should have the sole use of a personal computer for the 
purpose of the examination. Candidates should be able to access Spreadsheet application 
software and programming language software. The Centre will be required to declare the 
name and version number of the software to be used for the cohort sitting for the 
examination at least two years before the cohort sits for the examination. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

44 
 

  



ANNEX A 

45 
 

Quick Reference for Python 
 

 

This quick reference shows some examples of the Python language constructs. The complete Python language 
is not limited to these examples. 

1.  Identifiers 
 
When naming variables, functions and modules, 
the following rules must be observed: 
 
• Names should begin with character 'a' - 'z'  or  

'A' - 'Z' or '_'  
and followed by alphanumeric characters or 
'_' .    

• Reserved words should not be used. 
• User-defined identifiers are case sensitive. 
 
 
2.  Comments and Documentation Strings 
 
# This is a comment 
 
""" 
    This is a documentation string   
    over multiple lines 
""" 
 
 
3.  Input/Output 
 
print ("This is a string") 
 
s = input ("Instructions to prompt for data entry.") 
 
 
4.  Import 
 
import <module> 
 
e.g.  import math 
 
 
5.  Data Type 
 

Data Type Notes 

int integer 

float real number 

bool boolean 

str string (immutable) 

list series of values 

 
 

  6.  Assignment 
 

Assignment Statement Notes 

a = 1 integer 

b = c variable 

d = "This is a string" string 

mylist = [1, 2, 3, 4, 5] list  

 
7.  Arithmetic Operators 
 

Operator Notes 

+   - plus,  subtract 

*   / multiply,  divide 

% remainder or modulus 

** exponential or power 

// quotient of the floor division 

 
8.  Relational Operators 
 

Operator Notes 

== equality 

!= not equal to 

>   >= 
greater than, greater than or 
equal to 

<   <= less than, less than or equal to 

 
9.  Boolean Expression 
 

Boolean Expression Notes 

a  and  b logical and 

a  or  b logical or 

not  a logical not 

 
10.  Iteration 
 

while loop  for loop 

 
while condition(s): 
    <statement(s)> 

 

 for i in range(n): 
    <statement(s)> 

 for record in records:   
    <statement(s)> 

 



ANNEX A 

46 
 

11.  Selection 
 
 

Type 1  Type 2  Type 3 

 
if condition(s): 
    <statement(s)> 
 
 

  
if condition(s): 
    <statement(s)> 
else: 
    <statement(s)> 
 
 

  
if condition(s): 
    <statement(s)> 
elif condition(s): 
    <statement(s)> 
else: 
    <statement(s)> 

 

 
12. Functions 
 
# Function definitions 
def <function name> (<parameters>): 
    <function body> 
    return <return value> 
 
# Function calls 
<function name>(<arguments>) 

13.  Built-in Functions 
 
(a)  Basic functions 
 

abs() chr() float() input() int() 

len() max() min() ord() print() 

range() round() str() <str>.endswith() <str>.find() 

<str>.format() <str>.isalnum() <str>.isalpha() <str>.isdigit() <str>.islower() 

<str>.isspace() <str>.isupper() <str>.lower() <str>.split() <str>.startswith() 

<str>.upper()     

 
(b)  Math module  
 

ceil() floor() pow() sqrt() trunc() 

 
(c)  Random module 
 

randint()      
 



ANNEX A 

47 
 

14.  Reserved Words 
 
Reserved words are part of the syntax of the language. They cannot be used as identifiers. 
 

False None True and as 

assert break class continue def 

del elif else except finally 

for from global if import 

in is lambda nonlocal not 

or pass raise return try 

while with yield   

 
 

 
 
 



ANNEX B 
  

 
48 

 

Quick Reference for Flowcharting 
 

This quick reference shows four common symbols used in program flowcharts, and provide 
a standard guide for constructing program flowcharts. 
 
1. Common symbols 
 
 
 

 
 
 

 

2. Constructing flowcharts 
 
(a) Start with ONE terminator symbol 

 

 
 
 
 

(b) Have a single entry and a single exit (except for the terminator and decision 
symbols) 
 

 
 

 

Terminator 

Process Data Decision 



ANNEX B 
  

 
49 

 

(c) Flow lines should not cross one another 

 
 
 
 
 
 
 
 
 

Some people used a kink in the flow line but this is not 
recommended for our students. 



ANNEX C 
 

  
50 

 

Glossary of Terms 
 

Students should be familiar with the following terms in the learning outcomes, and these 
terms would be similarly used in the examination questions. 
 

Term Learning outcomes Definition 

Apply 4.2.6 Carry out or use common techniques or 
procedures. 

Compare 1.3.4 Give an account of positive and negative aspects, 
or advantages and disadvantages of two items. 

Compare and 
contrast 

2.2.4 Map, match. 
Give an account of similarities and differences of 
two items. 

Construct 2.1.3, 2.1.4 Produce, create. 
Put elements together to form a coherent whole; 
reorganise into a new pattern or structure. 

Convert 1.2.2 Transform, express in another way or manner. 
 

Correct 3.2.3 Rectify, make changes for improvement. 
 

Describe 1.2.2, 1.2.3, 1.3.3, 
2.1.1, 2.2.2, 2.2.3, 
4.1.1, 4.2.4 

Give a detailed account or give more information 
on the “what” and “how”. 

Design 2.1.4, 2.2.3, 4.2.3 Plan, visible thinking, evidence of ideas e.g. an 
artefact, a computer program, an outcome, a 
diagram, a drawing or a model. 

Explain 1.3.4, 2.2.1, 2.2.5, 
4.2.4, 4.2.5 

Construct models. Includes elements of analysis. 
Give a detailed account or give more information 
on the “where”, “how” and “why”. 

Evaluate 2.1.2 Make judgements based on criteria and 
standards. 
 

Identify 2.2.1, 3.1.3, 4.2.1 Recognise, name. 
Ability to differentiate and discriminate.  

Justify 4.1.3, 4.2.1 Give reasons or evidence to support an action or 
decision. 

Locate 3.2.3 Find. 
 

Modify 3.2.3 Make changes. 
 

Perform 3.2.1 Do, carry out. 
 

 



ANNEX C 
 

  
51 

 

Term Learning outcomes Definition 

Produce 3.2.2, 3.2.4, 4.1.5 Construct, create. 
 

Recognise 2.1.2 Identify. 
 

Represent 1.2.1 Present, express, show as. 
 

Specify 3.1.1, 4.2.3 State. 
 

State 3.1.3, 4.2.5 Say or write what something is about. 
 

Solve 3.1.2 Take action to arrive at an outcome or decision. 
 

Tabulate 1.1.1 Put in the form of a table. 
 

Understand 1.1.2, 1.3.1, 1.3.2, 
4.1.1, 4.1.2, 4.1.4, 
4.2.4, 4.2.6 

Construct meaning from instructional messages, 
including oral, written, and graphic 
communication. 

Use 1.1.2, 4.1.2, 4.1.3, 
4.1.4 

Practise, implement, create, construct. 

Validate 4.2.2 Check accuracy of. 
 

 
The definitions in italics are based on the Revised Bloom’s Taxonomy (Anderson and 
Krathwohl, 2001) 12  in a hand-out by the Iowa State University, Centre for Excellence in 
Learning and Teaching: 
 

• Remember – retrieve relevant knowledge from long-term memory 

• Understand – construct meaning from instructional messages, including oral, written, 
and graphic communication 

• Apply – carry out or use a procedure in a given situation 

• Analyse – break material into constituent parts and determine how parts relate to one 
another and to an overall structure or purpose 

• Evaluate – make judgements based on criteria and standards 

• Create – put elements together to form a coherent whole; reorganise into a new 
pattern or structure 

 

                                                      
12 Anderson, L.W. (Ed.), Krathwohl, D.R. (Ed.), Airasian, P.W., Cruikshank, K.A., Maye, R.E., Pintrich, P.R., 

Raths, J., & Wittrock, M.C. (2001). A taxonomy for learning, teaching and assessing: A revision of Bloom’s 

Taxonomy of Educational Objectives (Complete edition). New York: Longman. 


