

COMPUTING
 SYLLABUS

Pre-University

Higher 2

Syllabus 9569

Implementation starting with
2019 Pre-University One Cohort

© 2018 Curriculum Planning and Development Division.
This publication is not for sale. Permission is granted to reproduce this
publication in its entirety for personal or non-commercial educational use
only. All other rights reserved.

CONTENTS

Page

1. INTRODUCTION
1.1 Desired Outcomes of Education and Learning of Computing
1.2 Value of Learning Computing
1.3 Design Intent of Syllabus
1.4 Curriculum Framework
1.5 Aims of Syllabus
1.6 21st Century Competencies (21CC) in H2 Computing

4
5
6
6
9
9

2. CONTENT
2.1 Syllabus Overview

 Section 1: Algorithms & Data Structures
 Section 2: Programming

 Section 3: Data & Information

 Section 4: Computer Networks

13
14
16
18
20

3. PEDAGOGY
3.1 Pedagogical Considerations
3.2 Pedagogical Approaches

23
25

4. ASSESSMENT
4.1 Assessment Philosophy
4.2 School-based Assessment
4.3 National Examination

27

 28
28

SECTION 1:
INTRODUCTION

Desired Outcomes of Education and Learning of Computing

Value of Learning Computing
Design Intent of Syllabus

Curriculum Framework
Aims of Syllabus

21st Century Competencies (21CC) in H2 Computing

4

1. INTRODUCTION

1.1 Desired Outcomes of Education and Learning of Computing

The Desired Outcomes of Education (DOE) are attributes that educators aspire for every
Singaporean to have by the completion of his formal education. These outcomes establish a
common purpose for educators, drive our policies and programmes, and allow us to
determine how well our education system is doing.

The person who is schooled in the Singapore Education system embodies the DOE. He has a
good sense of self-awareness, a sound moral compass, and the necessary skills and
knowledge to take on challenges of the future. He is responsible to his family, community and
nation. He appreciates the beauty of the world around him, possesses a healthy mind and
body, and has a zest for life. In sum, he is

• a confident person who has a strong sense of right and wrong, is adaptable and
resilient, knows himself, is discerning in judgment, thinks independently and critically,
and communicates effectively;

• a self-directed learner who takes responsibility for his own learning, who questions,
reflects and perseveres in the pursuit of learning;

• an active contributor who is able to work effectively in teams, exercises initiative,

takes calculated risks, is innovative and strives for excellence; and

• a concerned citizen who is rooted to Singapore, has a strong civic consciousness, is
informed, and takes an active role in bettering the lives of others around him.

The learning of H2 Computing is aligned with the DOE. Through applying their knowledge of
relevant computing concepts and computational thinking skills, students are able to create
solutions to authentic problems. For example, during the problem definition phase, students
establish clearly what the problem is by determining the scope of the requirements and data
flows. During the problem analysis phase, students think logically about how the problem can
be decomposed into smaller and more manageable parts. During the design phase, students
apply abstraction to focus on important parts of the problem while hiding unnecessary details
as they think about possible solutions. During the development of the solution phase, they
actualise the design by creating an algorithm that solves the problem. The last phase of
computer-based solution requires students to translate an algorithm into a computer-based
program using a programming language. Finally, they also need to test the program to ensure
that it works as designed.

These authentic learning experiences encourage students to become critical thinkers and
innovators in designing solutions to complex problems. They are also able to develop
perseverance and resilience through rigorous debugging and refinement of their own
programs. Besides developing these qualities, there are also opportunities for students to

5

think critically, evaluate information sources, collaborate with others and communicate
effectively. The A-level Computing syllabus thus offers varied and enriched learning
opportunities centred around the DOE by building useful content knowledge and developing
the necessary skills and attitudes related to computing in students.

1.2 Value of Learning Computing

The discipline of computing1 is defined as the systematic study of algorithmic processes that
describe and transform information: their theory, analysis, design, efficiency,
implementation, and application. The fundamental question underlying all computing is
"What can be (efficiently) automated?"

The study of H2 Computing develops in students 21st century competencies, a set of
knowledge, skills and attitudes to prepare them to address the global challenges of an
increasing dynamic and interconnected world by harnessing technology.

Technology is so pervasive and intertwined into our daily lives to the extent that almost every
aspect of the modern world is linked or dependent on it. Through the study of Computing,
students will gain insights as to how common computing devices encountered in our daily
lives actually function, and to develop an appreciation for computing innovation. They will be
better able to understand the efforts underpinning technological advancements, as well as to
discuss the benefits and negative consequences brought about by computing.

A Computing student will develop computational thinking and systems thinking during the
course of study essential to problem solving. A Computing student will be able to effectively
integrate the use of both hardware and software to create new artefacts to solve existing
problems, as well as identify processes and tasks that can be automated by a computer,
thereby increasing the efficiency of current processes.

Computational Thinking and Problem Solving skills

Core to the subject of Computing is computational thinking. Computational thinking is the
process of problem solving which involves formal reasoning, logic and algorithmic thinking.
Students will develop computational thinking through the processes of problem analysis, and
the design and development of solutions for a variety of given problem situations. In a
problem situation, students analyse and identify the tasks that required computing solutions.
Students will consider possible empirical models, analyse data and evaluate information that
will help them in the problem solving process. They think algorithmically as they plan and
design the set of steps to solve each task, and engage in logical and analytical thinking as they
develop, test and evaluate the solutions.

These skills also support the development of 21CC in the domain of Critical and Inventive
Thinking (CIT); and Communication, Collaboration and Information Skills (CCI) which is

1 D.E., Corner, & David, Gries, & Micheal, Mulder, & Allen Tucker, & A.Joe, Turner, & Paul R., Young. Computing
as a Discipline. New York, USA: Communications of the ACM, Volume 32 Issue 1, Jan. 1989, Pages 9-23

6

elaborated in Section 1.6 Table A1.

1.3 Design Intent of Syllabus

The design of the H2 Computing curriculum took into consideration the key findings from the
environment scans of local and international syllabi, and the value proposition of Computing
for pre-university school curriculum. The core content area is organized so as to allow
students to apply knowledge, design and develop computing solutions.

The following key ideas are presented in the A-Level H2 Computing curriculum to integrate
Computing concepts, skills and processes as a coherent whole:

• Computing is a study of problems that can be effectively automated.
• Computational thinking is the process of identifying computational problems and

developing solutions to them.
• Computational thinking involves problem definition, problem analysis, design and

development of solution and creating a computer-based solution.
• Algorithms are tools for developing and expressing solutions to computational problems.
• Programming is a creative process that produces computational artefacts.
• Computing devices and the networks that interconnect them enable and foster

computational approaches to solving problems.

1.4 Curriculum Framework

The design of the H2 Computing curriculum is guided by the Computer Education Framework.
The aim is to provide a balanced coverage between theory and practice through the learning
of fundamental Computing concepts and principles, as well as the application of logical
reasoning and problem-solving skills to practical contexts. The framework consists of three
dimensions: Computer as a Tool, Computer in Society and Computer as a Science. These three
dimensions undergird the broad ideas of systems thinking and computational thinking
inherent in the study of Computing.

7

The computer education framework comprises three dimensions (Figure 1):

• Computer as a Science

• Computer as a Tool

• Computer in Society

Computer as a Science

The dimension of Computer as a Science looks into the scientific aspect of computer science,
focusing on the core components of computational and systems thinking.

Computational thinking develops students’ skills in problem solving through algorithmic
thinking and design. Acquisition of programming language skills is usually a part of this area
of learning. Computational thinking, as defined by Jeannette M. Wing2, is a way people solve
problems and that it is not about trying to get people to think like computers3. This often
involves thinking and problem-solving processes to reformulate a seemingly difficult task into
one we know how to solve. Thus, computational thinking, in her opinion, is a fundamental
skill for everyone, not just for computer scientists.

Systems thinking develops students in the design and creation of systems and solutions
through processes in problem definition, system analysis, and systems design.

Computer as a Tool
The dimension of Computer as a Tool looks mainly at the utilitarian aspect of computing and
ICT. At the heart of it are the use of the computer and the use of computer applications. Use
of computer exposes students to the hardware, the technology and related devices and
peripherals that open up ways for work, play and living.

Use of computer applications focuses on the mastery of productivity, communications and
creative tools to complete tasks for specific purposes. Common examples include word
processing, spreadsheets, graphics, emails, animation and web design.

2 Jeannette M. Wing is the President’s Professor of Computer Science and head of the Computer Science Department at

Carnegie Mellon University.
3 J. M. Wing. Computational Thinking. Communications of the Association for Computing Machinery (ACM), March 2006,

Vol. 49(3).

8

Figure 1: Computer Education Framework (The outer ring are examples of topics linked to each
of the three dimensions shown in the inner ring. The middle ring expresses the desired
concepts, skills and attitudes developed under each dimension.)

Computer in Society
This dimension focuses mainly on the ethical, legal and security issues relating to the use of
computers and ICT in society. Issues commonly associated with this dimension include
internet security, intellectual property, computer addiction, and data privacy.

The inclusion of the 21st century skills component reflects the impact of technology on the
kind of skills needed at the workplace of the future. 21st century skills relevant to the ICT
area include the ability to work collaboratively, produce creative work and be self-directed in
learning.

SOCIETY

TOOL

SCIENCE

• Animation

• Word processing

• Presentation
tools

• Spreadsheets

• Media tools

• Algorithmic
thinking

• Discrete
mathematics

• Data structures

• Intellectual
property

• Computer crimes

• Abstraction

• Programming

• Ethics

• The internet • Safety

• Viruses

• Networks and
communications

• Systems
Analysis and
Design

• Software
Engineering

• Computer
hardware

• Computer security

• CAD/CAM Computational
Thinking

Systems
Thinking

Use of
Computer

Use of
Applications

21st Century
Skills

Ethical &
Legal Use

Safe &
Responsible
Use

• Netiquette

• Addiction

• ICT devices

• Assembly & maintenance

• Collaboration
/ Teamwork

• Creativity /
Innovation

• Self direction

• Troubleshooting

• Web page
design

• Data privacy

• Image editing

• Social media

• Project
management

• Data
storage

• Robotics

• Data bases

• Games

• Simulation

9

 1.5 Aims of Syllabus

The H2 Computing curriculum provides students with a broad understanding of the
fundamental concepts and principles of computing, and a systemic understanding of how
hardware and software work together in computing solutions. The syllabus covers the
application of data structures and algorithms to process data through computer programs
that are specifically designed and developed to solve authentic problems. Students will be
exposed to authentic real-world contexts through hands-on practical assignments and
projects in the realisation of computer programs from algorithms. Students will learn
algorithm design and programming skills as a critical element of developing higher-order
thinking skills. Through these learning experiences, the subject will provide a broad-based
foundation for further studies in computing and other related fields.

The aims of the syllabus are to:

a) Acquire knowledge and understanding of core areas in computing covering concepts
of algorithms, data structures, programming, databases and networks.

b) Develop and apply problem-solving and computational thinking skills to solve real-
world problems using suitable algorithms and data structures in a web-based
environment using a personal computer.

c) Develop (i) an appreciation of computing as a dynamic and creative field including
awareness of recent developments in computer systems; and (ii) an understanding of the
social, ethical, legal and economic implications of computing.

d) Develop attitudes and 21CC needed to do well in computing such as inventive thinking,
perseverance, collaboration, communication as well as striving for accuracy and
thoroughness.

1.6 21st Century Competencies (21CC) in H2 Computing

The H2 Computing curriculum provides multiple opportunities for the development of 21st
century competencies (21CC). For example, when a student designs and creates a web-based
application to automate a task or improve a workflow, such as a task reminder or resource
management application, they will develop inventive thinking when brainstorming for ideas.
They will apply computational thinking in analysing how the application can be decomposed
into modules that can be developed separately and integrated together later on. They will
also apply formal reasoning when designing algorithms to solve the problem. As they test and
improvise the design, they develop critical thinking during the refinement process. At the
same time, students will have opportunities for collaborative learning and to hone their
communication skills during presentations of their solutions.

The H2 curriculum provides opportunities for the development of 21CC in the areas of
Communication, Collaboration and Information (CCI), Critical and Inventive Thinking (CIT) and
Civic Literacy, Global Awareness and Cross-Cultural Skills (CGC). In addition, desired attitudes

10

such as creativity and resilience are fostered through the curriculum. These are illustrated in
Table A1.

Table A1: Development of 21CC in A-Level H2 Computing

Computer Science Competencies and
Attitudes

21st Century Competencies Benchmarks
(By end of JC2)

 Critical and Inventive Thinking (CIT)

Ability to explore different plausible
solutions and brainstorm ideas for
problems (creativity).

1.1d: The student is able to generate ideas
and explore different pathways that lead to
solutions.

Ability to apply computational thinking by:

• synthesizing knowledge and skills from
the five core Computer Science areas;
and

• applying formal reasoning and systems
thinking in the analysis, design and
implementation of computer solutions.

2.1d: The student is able to use evidence
and adopt different viewpoints to explain
his/ her reasoning and decisions, having
considered the implications of the
relationship among different viewpoints.

Ability to debug and refine computer
programs (computational thinking).

2.2d: The student is able to suspend
judgment, reassess conclusions and
consider alternatives to refine his/ her
thoughts, attitudes, behaviour and actions.

Ability to:

• analyse and simplify problems into
manageable tasks (analytical thinking);

• persist in developing computer
solutions and debugging of programs
when they do not work until the ‘bugs’
have been fixed (resilience); and

• evaluate solutions using test cases
(evaluative thinking).

3.1d: The student is able to identify
essential elements of complex tasks, stay
focused on them, take on diverse roles and
persevere when they encounter difficulties
and unexpected challenges.

3.2d: The student is able to manage
uncertainty and adapt to diverse demands
and challenges in new and unfamiliar
contexts.

Computer Science Competencies and
Attitudes

21st Century Competencies Benchmarks
(By end of JC2)

 Communication, Collaboration and
Information (CCI)

Ability to explain and communicate
programming solutions and choice of data
structures.

1.1e: The student is able to convey complex
information and ideas coherently and
clearly to influence and create impact for
specific purposes and contexts.

11

1.2e: The student is able to interact with
others to construct and critically evaluate
knowledge, new understanding and ideas.

Ability to be resourceful in searching and
gathering pertinent information required
to solve the computer-based problem.

2.1c: The student is able to refine search
results, organise information systematically
and manage information sensitively, while
abiding by copyright regulations and
minimising security risks in the handling of
information.

2.2c: The student is able to verify the
accuracy, credibility and currency of
information across multiple sources.

Computer Science Competencies and
Attitudes

21st Century Competencies Benchmarks
(By end of JC2)

 Civic Literacy, Global Awareness and Cross-
cultural Skills (CGC)

Ability to understand standards in ICT and
the importance of standards to ensure
environmental, health and public safety.

1.1e: The student is able to discuss issues
that affect the culture, socio-economic
development, governance, future and
identity of Singapore and consider their
implications.
2.1e: The student is able to analyse global
trends and their implications for Singapore
and other countries.

Adopt ethical practices and conduct of an
ICT professional.

12

SECTION 2:
CONTENT

Syllabus Overview

Section 1: Algorithms & Data Structures

Section 2: Programming

Section 3: Data & Information

Section 4: Computer Networks

13

2. CONTENT

2.1 Syllabus Overview

This syllabus consists of four sections: (I) Algorithms and Data Structures, (II) Programming,
(III) Data and Information, and (IV) Computer Networks that will cover common areas of
fundamental computing concepts and theories to be undertaken at the pre-university level
for two years.

The two sections of (I) Algorithms and Data Structures, and (II) Programming are considered
as enduring concepts and skills which form the core fundamentals in computing courses while
the teaching of the other two sections: (III) Data and information, and (IV) Computer
Networks are considered as timely concepts and skills, intended to keep students abreast of
new trends and developments in computing and technology.

The four sections and the respective units of study for each section are listed with details in
subsequent pages.

14

Section 1: Algorithms and Data Structures

This section introduces the implementation of data structures to store and retrieve data
efficiently, as well as their associated algorithms with the aim of developing problem solving
skills. It also includes important concepts of decomposition and modularity, as well as
techniques such as the use of decision tables to test algorithms. Students will need to abstract
both data and procedures when they apply computational thinking to a problem. In addition,
students will learn to implement various search and sort algorithms, and compare their
efficiency for evaluation purposes. There are three units of study:

1.1 Algorithmic Representation
1.2 Fundamental Algorithms
1.3 Data Structures

1.1 Algorithmic Representation
 Write algorithms in pseudo-code and flowchart for given problems.

Ref Learning Outcome

1.1.1 Use appropriate techniques or tools such as pseudo-code and flowchart to show
program flow.

1.1.2 Use standard flowchart symbols.
1.1.3 Use a combination of various control structures.
1.1.4 Use decision tables to explore the actions for combinations of different input conditions.

Note: up to three conditions
1.1.5 Use modular design to decompose a problem into smaller problems.

1.2 Fundamental Algorithms
 Understand algorithms for sorting and searching methods such as insertion sort,
 bubble sort, quicksort, merge sort, linear search, binary search and hash table
 search; and use examples to explain these methods.

Ref Learning Outcome

1.2.1 Implement sort algorithms.
- Insertion sort
- Bubble sort
- Quicksort
- Merge sort

1.2.2 Use examples to explain sort algorithms.
1.2.3 Implement search algorithms.

- Linear search
- Binary search
- Hash table search

1.2.4 Use examples to explain search algorithms.
1.2.5 Compare and describe the efficiencies of the sort and search algorithms using Big-O

notation for time complexity (worst case).
Exclude: space complexity

15

1.3 Data Structures
Understand concept and write algorithms for stack and queue (linear and circular),
linear linked list and binary search tree.

Ref Learning Outcome

1.3.1 Understand the concept of static allocation of memory.
1.3.2 Understand the concept of dynamic allocation of memory.
1.3.3 Create, insert, and delete operations for stack and queue (linear and circular).
1.3.4 Understand the concept of free space list (which could be another linked list or an array).
1.3.5 Create, update (edit, insert, delete) and search operations for a linear linked list.

Exclude: doubly-linked list and circular linked list
1.3.6 Create, update (edit, insert, delete*) and search operations for a binary search tree.

*Exclude: deletion of nodes from binary search tree
1.3.7 Understand pre-order, in-order and post-order tree traversals; and application of in-order

tree traversal for binary search tree.

16

Section 2: Programming

This section introduces students to the fundamental principles of programming in textual
languages. Students will learn the common standards of programming style, programming
constructs and library functions to be able to develop their own programs so as to solve a
variety of problems. They are also required to write code to implement data structures such
as stacks, queues, linked lists and binary search trees. In addition, students will also be
expected to design, test and debug their own programs through lab-based practical
assignments to ensure that they can work. The fundamental concepts of encapsulation,
inheritance and polymorphism associated with object-oriented programming are also
covered in this section. There are five units of study:

2.1 Coding Standards
2.2 Programming Elements and Constructs
2.3 Implementing Algorithms and Data Structures
2.4 Data Validation and Program Testing
2.5 Fundamentals of Object-Oriented Programming

2.1 Coding Standards
 Use common coding standards for programming style (which is dependent on
 programming language used).

Ref Learning Outcome

2.1.1 Use indentation and white space.
2.1.2 Use naming conventions (e.g. meaningful identifier names)
2.1.3 Write comments (name of programmer, date written, program description and version

book-keeping/control)

2.2 Programming Elements and Constructs
 Use programming language elements and constructs to write recursive and non-
 recursive programs to solve a variety of problems.

Ref Learning Outcome

2.2.1 Understand the different data types: integer, real, char, string and Boolean; and
initialise arrays (1-dimensional and 2-dimensional).

2.2.2 Use common library functions for input/output, strings and mathematical operations.
2.2.3 Apply the fundamental programming constructs to control the flow of program

execution:
- Sequence
- Selection
- Iteration

2.2.4 Use functions and procedures to modularise problem into chunks of code.
2.2.5 Understand the concept of recursion.
2.2.6 Trace the steps and list the results of recursive and non-recursive programs.
2.2.7 Understand the use of stacks in recursive programming.

17

2.3 Implementing Algorithms and Data Structures
 Use programming language elements and constructs to implement sort and search
 algorithms such as insertion sort, bubble sort, quicksort, merge sort, linear search,
 binary search, and hash table search, as well as data structures such as stacks,
 queues, linear linked lists and binary search trees.

Ref Learning Outcome

2.3.1 Implement sort programs.
- Insertion sort
- Bubble sort
- Quicksort
- Merge sort

2.3.2 Implement search programs.
- Linear search
- Binary search
- Hash table search

2.3.3 Write programs to implement operations for stacks, queues (linear and circular), linear
linked lists and binary search trees.
Exclude: doubly-linked list and circular linked list

2.3.4 Store data in and retrieve data from serial and sequential text files.

2.4 Data Validation and Program Testing
 Use data validation techniques and design test cases.

Ref Learning Outcome

2.4.1 Explain the difference between data validation and data verification.
2.4.2 Understand data validation techniques such as:

- range check
- format check
- length check
- presence check
- check digit

2.4.3 Identify, explain and correct syntax, logic and runtime errors.
2.4.4 Design appropriate test cases using normal, abnormal and extreme data for testing and

debugging programs.

2.5 Fundamentals of Object-Oriented Programming
 Understand concepts of encapsulation, inheritance and polymorphism.

Ref Learning Outcome

2.5.1 Define and understand classes and objects.
2.5.2 Understand encapsulation and how classes support information hiding and

implementation independence.
2.5.3 Understand inheritance and how it promotes software reuse.
2.5.4 Understand polymorphism and how it enables code generalisation.

Exclude: method overloading and multiple inheritance

18

Section 3: Data and Information

This section introduces students to the design, use and application of database management
systems. The topics include relational data model, relational query languages and conceptual
data design and modelling for relational database design. Students are expected to write
programs to retrieve data from either a relational or non-relational database, process the
data and return the processed data as a result. The use of databases also highlights the
importance of data privacy and integrity. Students should be able to describe measures to
safeguard the use of data. In addition, students should also be able to describe the code of
conduct of a computing professional and discuss the social, economic and ethical implications
of computing and technology. There are four units of study:

3.1 Data Representation
3.2 Character Encoding
3.3 Databases and Data Management
3.4 Social, Ethical, Legal and Economic Issues

3.1 Data Representation
 Understand that values can be represented in different number bases: denary,
 binary and hexadecimal.

Ref Learning Outcome

3.1.1 Represent data in binary and hexadecimal forms.
3.1.2 Write programs to perform the conversion of positive integers between different

number bases: denary, binary and hexadecimal forms; and display results.

3.2 Character Encoding
 Understand the use of ASCII code and Unicode to represent characters.

Ref Learning Outcome

3.2.1 Give examples of where or how Unicode is used.
3.2.2 Use ASCII code in programs.

19

3.3 Databases and Data Management
 Understand, create and use SQL and NoSQL databases, as well as understand
 techniques to protect the privacy and integrity of data.

Ref Learning Outcome

3.3.1 Determine the attributes of a database: table, record and field.
3.3.2 Explain the purpose of and use primary, secondary, composite and foreign keys in tables.
3.3.3 Explain with examples, the concept of data redundancy and data dependency.
3.3.4 Reduce data redundancy to third normal form (3NF).
3.3.5 Draw entity-relationship (ER) diagrams to show the relationship between tables.
3.3.6 Understand how NoSQL database management system addresses the shortcomings of

relational database management system (SQL).
3.3.7 Explain the applications of SQL and NoSQL.
3.3.8 Use a programming language to work with both SQL and NoSQL databases.
3.3.9 Understand the need for privacy and integrity of data.
3.3.10 Describe methods to protect data.
3.3.11 Explain the difference between backup and archive.
3.3.12 Describe the need for version control and naming convention.
3.3.13 Explain how data in Singapore is protected under the Personal Data Protection Act to

govern the collection, use and disclosure of personal data.

3.4 Social, Ethical, Legal and Economic Issues
 Understand the importance of ethics in the conduct of Computing professionals
 and the impact of Computing in different real-life situations.

Ref Learning Outcome

3.4.1 Understand the code of ethics (conduct) of a Computing professional.
3.4.2 Describe the impact of computing on lifestyle and workplace for social and economic

developments.
3.4.3 Discuss the social, ethical, legal and economic issues of computing and technology.

20

Section 4: Computer Networks

This section provides a broad view of the different types of basic networks, communication
protocols and standards in a network. Students will be expected to understand concepts and
techniques for developing web applications, describe the different types of threats to
network security and propose mechanisms to protect and secure access to networks. They
need to design, develop and test web applications as a consolidation of knowledge and skills
through hands-on practical work and projects. There are three units of study:

4.1 Fundamentals of Computer Networks
4.2 Web Applications
4.3 Network Security

4.1 Fundamentals of Computer Networks
 Understand computer network technology.

Ref Learning Outcome

4.1.1 Explain the concepts of LAN, WAN, intranet and the structure of the internet.
4.1.2 Understand the concepts of IP addressing and domain name server (DNS).
4.1.3 Explain the need for communication protocols in a network.
4.1.4 Explain how data is transmitted in a packet-switching network.
4.1.5 Explain client-server architecture.
4.1.6 Implement an iterative server with socket programming. Given the server code, students

should be able to implement the client code for a given scenario, and vice-versa e.g. for a
tic-tac-toe game.

4.2 Web Applications
 Understand the concepts and techniques for developing web applications.

Ref Learning Outcome

4.2.1 Describe the differences between web applications and native applications.
4.2.2 State and apply usability principles in the design of web applications.
4.2.3 Use HTML, CSS (for clients) and Python (for the server) to create a web application that

is able to:
- accept user input (text and image file uploads)
- process the input on the local server
- store and retrieve data
- display the output (as formatted text/ images/table)

4.2.4 Test a web application on a local server.

21

4.3 Network Security
 Understand computer network security in terms of threats, protection
 mechanisms and secure access.

Ref Learning Outcome

4.3.1 Understand how malware (e.g. worms and viruses) and denial of service (DOS) attacks
can compromise computer systems.

4.3.2 Understand how firewall (filtering function), intrusion detection system (IDS) and
intrusion prevention system (IPS) can be used to restrict network access; and their
limitations.

4.3.3 Understand how encryption, digital signature, and authentication can ensure security of
network applications.

22

SECTION 3:
PEDAGOGY

Pedagogical Considerations
Pedagogical Approaches

23

3. PEDAGOGY

3.1 Pedagogical Considerations

Some of the factors that have shaped pedagogical approaches relevant to the teaching of
Computing are identified as follows:

1. Alignment with Principles of Applied Learning

Applied learning is a notion that is gathering momentum in many educational contexts around
the world, and is often equated to ‘hands on’ or practical learning experiences. Despite the
many definitions of what constitutes applied learning, a number of recurring themes can be
found across these definitions. These themes can be viewed as the pedagogical principles that
support applied learning:

• emphasises the relevance of what is being learnt to the ‘real world’ outside the
classroom, and makes that connection in an immediate and explicit manner;

• requires students to use hands-on or experiential learning to enact authentic
scenarios, where students focus on learning and applying the skills and knowledge
they need to solve a problem and implement a project;

• involves students and teachers in partnerships with the industries, community,
institutions of higher learning, professional training bodies, and individuals outside
school

H2 Computing aims to embody the principles of applied learning through a contextualized
approach that would motivate students, while providing varied and enriched opportunities
for the development of core skills and knowledge required for further education and active
participation in their communities. Hence, teachers should plan their teaching to offer
learning through doing experiences for their students to make sense of their “doing” by
making connections to what they have learnt and constructing new knowledge for themselves
in meaningful and purposeful ways so as to see the usefulness of Computing artefacts as
products of innovations that solve real-world problems at homes, in their communities and
the world at large. They should also plan lessons that provide opportunities for students to
explore through the use of robots, micro-computers, computer simulations and visualization
to deepen their own understanding and concretise abstract concepts.

2. Authentic Learning Experiences

Authentic learning typically focuses on real-world, complex problems and their solutions
through a variety of problem-based activities, role-playing exercises, case studies, and
participation in virtual communities of practice.

In “Authentic Learning for the 21st Century: An Overview”, Marilyn Lombardi, illustrated that
learning by doing is generally considered the most effective way to learn. She also espoused
that the Internet and a variety of emerging communication, visualisation, and simulation

24

technologies make it possible to offer students authentic learning experiences ranging from
experimentation to real-world problem solving.

The essence of authentic learning experience applicable to Computing is largely distilled in
these design elements:

(i) Real-world relevance
The provision of authentic activities in the teaching of Computing should mirror the
real-world tasks of professionals in practice as nearly as possible. Learning rises to the
level of authenticity when students are required to work actively with abstract
concepts, facts, and principles to create a web or mobile application or design a simple
home network.

(ii) Ill-defined problem
Computing challenges are not easily solvable by the application of an existing
algorithm. Instead, students will embark on authentic activities that are undefined and
open to multiple interpretations, where they are required to identify for themselves
the tasks and subtasks needed to complete the major task.

(iii) Sustained investigation
The solutions to computational problems cannot be solved in a matter of minutes or
even hours. Instead, students are required to investigate in complex tasks over a
sustained period of time despite experiencing initial frustration or disorientation.

(iv) Multiple sources and perspectives
Students would examine the task from a variety of theoretical and practical
perspectives, using a variety of resources, and they will develop critical information
skills of distinguishing relevant from irrelevant information in the process.

(v) Collaboration
Success is not achievable by an individual working alone. Authentic activities make
collaboration integral to the task, both within the course and in the real world.

(vi) Reflection (metacognition)
In designing a solution, students have to deliberate over their choices and reflect on
their learning, both individually and as a team or community.

(vii) Multiple interpretations and outcomes
Rather than yielding a single correct answer obtained by the application of theories
and concepts, there may be diverse interpretations and varied solutions to a single
computational problem.

Professionals with Computing skills often possess attributes and traits mentioned above as
they work to design, develop and test programs or systems that can solve real-world
problems. Getting students to solve real-world problems provides students with a full
experience of this problem-solving process and the necessary opportunities to develop these
useful attributes and traits.

25

3.2 Pedagogical Approaches

In line with principles of applied learning, the central pedagogical approach adopted is
“learning through doing”. This exploratory and hands-on approach is learner-centric, by
encouraging learners to actively do something in order to concretise concepts and theories
learnt. This not only allows students to directly observe and understand what they have
learnt, but also helps them to develop a range of higher-order thinking skills. In addition, it
encourages students to be self-directed and resourceful, which builds their confidence and
self-management skills.

26

SECTION 4:
ASSESSMENT

Assessment Philosophy

School-based Assessment
National Examination

27

4. ASSESSMENT

4.1 Assessment Philosophy

Assessment is an integral part of the learning process, and must be closely aligned with
curricular objectives, content and pedagogy. Both school-based assessment and national
examinations play important and different roles in our education system. A balanced
assessment system should comprise of both assessment of learning as well as assessment for
learning. Whether implemented in the classrooms or as part of national examinations,
assessment should lead to meaningful learning. The ‘what’ and ‘how’ of assessment should
be anchored on the clarity of purpose (‘why’). There should be regular gathering of
quantitative and qualitative information about a learner’s progress and development, and
such information should be used to inform learning and shape future teaching and learning
practices.

The measurement of the efficacy of learning is dependent upon the gathering of accurate
evidence about what students have learned for both teachers and students to make informed
decisions about what to do next in order to improve student attainment. Assessment is
integral to checking if learning has taken place as intended and planned.

The following are the three key messages of our assessment philosophy:

1. Assessment is integral to the learning process
Assessment is an iterative and continuous process which motivates learning and helps
learners to achieve the learning outcomes stated in our curricular documents. The gathering
and use of assessment information must become part of the ongoing learning process.
Assessment can take the form of projects, classroom tests or national examinations, but the
underlying goal should be to facilitate meaningful learning where the learning process is
developmentally appropriate, caters to students’ varied needs, and helps learners achieve
our Desired Outcomes of Education (DOE).

2. Assessment begins with clarity of purpose
Assessment should be fit for purpose and based on sound educational principles. Decisions
on ‘what’ to assess and ‘how’ to assess should be aligned with a clear purpose. A balanced
assessment system consists of both assessments for learning as well as assessment of
learning. In particular, formative assessment should be carried out during the instructional
process for the purpose of improving teaching and learning, while summative assessment
serves to provide information on students’ mastery of content knowledge and skills.

3. Assessment should gather information to inform future practices
Assessment in schools should produce both quantitative and qualitative descriptions of
learner performance to provide feedback for improving future teaching, learning and
performance. Assessment should also help students become self-directed learners. There is

28

also the need to use different modes of assessment so that we can determine how best to
support students in their progress with respect to different domains of learning.

4.2 School-based Assessment

Assessment is an important part of classroom teaching and learning and is an ongoing process
by which teachers gather information about students’ learning to inform and support
teaching. Assessment generally serves two purposes:

• Formative Assessment, such as projects, are used to determine how students are

progressing through certain learning outcomes during a series of learning activities or to
establish prior knowledge at the start of the learning cycle. This type of assessment can
be used to identify learning gaps to provide timely feedback to students on their learning,
and inform teachers on planning for future instruction.

• Summative Assessment, such as tests, school and national examinations, are used at the

end of a series of learning activities to determine the level of students’ attainment of the
desired learning outcomes. It is commonly used for placement and grading.

In Computing, students are expected to apply their theoretical knowledge explicating
computational thinking to solve real-life problems. To develop the necessary skills, teachers
need to gather timely and regular information on their students’ level of competency so as to
provide targeted feedback to help students improve. The adopted pedagogies and resources
offer opportunities for assessment for learning by getting the students to perform tasks that
demonstrate their understanding of the concepts.

4.3 National Examination

Details on the national examination are found in the Examination Syllabus on the website of

the Singapore Examinations and Assessment Board.

http://www.seab.gov.sg/
http://www.seab.gov.sg/

